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1

1.a
Given our revenue function

f (x, y) = −2x2 − y2 + xy + 8x + 3y

where x is a one minute TV ad costing $3,000 and y is a one minute radio ad costing $1,000, we can
use the nonlinear programming problem solving fmincon in order to minimize this negative revenue
function − f (x, y) [see Matlab code below or attached separately in email]. We obtain the values x =
[2.4643; 2.6071]. Since the company can only purchase one minute blocks, we need to round these values
to the nearest integer. However, we can add an additional one or two radio ads without breaking our
budget constraint ($10,000), we will need to manually test those values.

Plugging in x1 = [2; 2], x2 = [2, 3], and x3 = [2, 4], we obtain the following revenue, respectively:
$14, $14, and $12. This means we can run either 2 TV and 2 radio ads or 2 TV or 3 radio ads for the same
maximum return in revenue at $14. Revenue falls to $12 if we buy 2 TV and 4 radio ads.

1.b
In order to determine the marginal rate of return on the company’s additional overall advertisement
spending, we can check the values in our lambda. We see that in lambda.lower, for every dollar of
additional spending in TV and radio ads, we should expect a 8.1152e-0.9 and 7.6706e-0.9 return in our
revenue, respectively. Our lambda.ineqlin gives us 2.5e-04, which means for every dollar our budget
increases, we should expect a 2.4e-04 return in our revenue, all else equal.

1.c
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Unfortunately, I was not able to discretize these graphs into one minute blocks. However, at the TV
ad price of $2,000, the company should purchase 3 TV ads and 3 radio ads for a total revenue of $15 at
the cost of $9,000. As the price of TV ads increases, we find, naturally, the company would purchase
fewer TV ads. The total cost also increases until the company hits their budget of $10,000 and with
total revenue decreasing proportionally after TV ad prices hit around $2,600. We expect the company
to purchase 3 TV ads if the price is cheaper than around $3,000 and to purchase 2 thereafter until the
TV ad price hits over $5,000, where the company will only purchase 1 TV ad, as 2 at that price would
already be over budget.

2

2.a
This is an infinite horizon, deterministic model with one state variable and one choice variable with a
nonrenewable resource. The current reward, net profit, would be revenue minus the cost of extraction

f (st, xt) = p(xt)xt − c(xt)

The value of the resource stock would be:

V(st) = max
0≤xt≤st

{p(xt)xt − c(xt) + δV(st − xt)}

s.t. st+1 = h(st − xt)

0 ≤ xt ≤ st

0 ≤ st ≤ s̄; where s̄ = 8

However, we could formulate this as a renewable resource as such:

f (xt) =
∫ xt

0
p(xt)dx− c(xt)

The value of the resource stock would be:

V(st) = max
∞

∑
t=0

∫ xt

0
[p(x)dx− c(x)] + δV(st+1)

s.t. st+1 = h(st − xt)

0 ≤ xt ≤ st

0 ≤ st ≤ s̄; where s̄ = 8

2.b
Bellman’s Equation:

V(st) = max
∞

∑
t=0

∫ xt

0
[p(x)dx− c(x)] + δV(st+1), t = 0, . . . , ∞

Taking the first-order condition:

∂V(st)

∂xt
=

∂

∂xt
[p(x)dx− c(x) + δV(st+1)] = 0

= p(xt)− c′(xt)− δ
∂V

∂st+t
h′(.) = 0

= p(xt)− c′(xt) = δλt+1h′(.)
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By the envelope theorem,

∂V(st)

∂st
=

∂

∂st
[p(x)dx− c(x) + δV(st+1)] = 0

= λst = δλt+1h′(.)

We find that marginal revenue (current price) minus the marginal cost (the harvesting cost) equals the
shadow price of leaving the resource to be harvested in the future. In other words, δλt+1h′(.) is the
opportunity cost of harvesting and λt+1 is the shadow price of leaving the resource not extracted.

2.c
We can plug in the values from our model assumptions:

V(st)

∂xt
=

∂

∂xt
[p(x)dx− c(x) + δV(st+1)]

= 0.5x−0.5
t − 3.2 + st − xt = 0

2.d
Sensitivity analysis with respect to discount factor (δ)
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We see that as the discount factor increases from 0.1 to 0.9, our optimal harvesting policy decreases, the
value increases, and more of the stock is left for consumption at a later time period. This makes sense
since as the discount factor increases, it means one values the resource increasingly more in the future,
and thus, in the steady state, more of the resource stock is saved for the next time period.

Sensitivity analysis with respect to growth factor (α)
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We see that as the growth factor increases from 3 to 4, the optimal harvesting policy decreases, the value
increases, and more of the stock is left for consumption at a later time period. This means that the faster
the resource grows, the more that can be harvested in a shorter time frame, making it more valuable.
Additionally, if the growth rate is higher or equal to consumption rate, it is no longer a scarce (or as
scarce) of a resource, and in the steady state with increasing growth factor, there will be more stock in
the future.

3 Matlab Code

Problem 1.a

clear; clc;

rev = @(x) (2)*x(1)^2+x(2)^2-(x(1)*x(2))-8*x(1)-3*x(2); % Revenue function

x0 = [2; 1]; % Initial guess

A = [3000 1000]; % Cost for TV and radio ads

b = [10000]; % Budget constraint

Aeq = [];

Beq = [];

lb = zeros(2,1); % Inequality constraints (greater than or equal to 0)

options = optimset(’Algorithm’,’interior-point’, ’Display’, ’off’);

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(rev, x0, A, b, Aeq, Beq,

lb, [], [], options);

disp(x);

% Since we can floor or ceil radio without breaking our budget constraint,
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% we should double check which one gives us the higher revenue

x1 = [2;2]; % 2 TV ads, 2 radio ads

x2 = [2;3]; % 2 TV ads, 3 radio ads

x3 = [2;4]; % 2 TV ads, 4 radio ads

rev1 = rev(x1);

disp(rev1);

rev2 = rev(x2);

disp(rev2)

rev3 = rev(x3);

disp(rev3)

Problem 1.c

clear; clc;

TV = 2000:4000; % Price range of TV ads

z = zeros (5,numel(TV)); % Create a zero matrix for storing results

rev = @(x) (2)*x(1)^2+x(2)^2-(x(1)*x(2))-8*x(1)-3*x(2); % Revenue function

x0 = [2; 1]; % Initial guess

b = [10000]; % Budget constraint

Aeq = [];

Beq = [];

lb = zeros(2,1); % Inequality constraints (greater than or equal to 0)

options = optimset(’Algorithm’,’interior-point’, ’Display’, ’off’);

for k = 1:numel(TV)

TV1 = TV(k); % number of women viewers

A = [TV1 1000]; % Cost for TV and radio ads

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(rev, x0, A, b, Aeq, Beq,

lb, [], [], options);

z ([1 2], k) = x; % Stores TV ads in row 1, radio ads in row 2; floors to next

lowest integer

z (3, k) = (-2)*z(1,k)^2-z(2,k)^2+z(1,k)*z(2,k)+8*z(1,k)+3*z(2,k); % Stores total

continuous revenue in row 3

z (4, k) = TV(k); % Stores changing constraint price of TV ads from $2000 to

$4000 in row 4

z (5, k) = z(1,k)*z(4,k)+z(2,k)*1000; % Stores calculated total cost in terms for

1-min block commercial (discretized)

end

plot(TV,z(3,:));

ylabel(’Total Revenue’)

xlabel({’TV Ad Price’})

title(’TV Price Sensitivity on Revenue’)

ytickformat(’usd’)

xtickformat(’usd’)

xlim([1623 4285])

ylim([13.85 15.45])

plot(TV,z(5,:));

ylabel(’Total Cost’)

xlabel({’TV Ad Price’})

title(’TV Price Sensitivity on Cost’)

ytickformat(’usd’)

xtickformat(’usd’)

xlim([1461 4682])

ylim([7849 10748])

plot(TV,z(1,:));

ylabel(’Optimal TV Ad Purchase’)

xlabel({’TV Ad Price’})
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title(’TV Price Sensitivity on Number of TV Ads Purchased’)

xtickformat(’usd’)

xlim([1797 4217])

ylim([1.86 2.95])

Sensitivity analysis of delta (discount factor)

clear;clc;

close all

% Enter model parameters

alpha = 3.0; % growth function parameter

beta = 1.0; % growth function parameter

gamma = 0.5; % demand function parameter

cost = 0.2; % marginal cost of harvest

% Construct state space

n = 200; % number of states

smin = 0; % minimum state

sbar = 8; % maximum state

S = nodeunif(n,smin,sbar); % vector of states

% Construct action space

m = 100; % number of actions

xmin = 0; % minimum action

xmax = 6; % maximum action

X = nodeunif(m,xmin,xmax); % vector of actions

% Sensitivity analysis of delta

delta = 0.1:0.1:0.9; % discount factor

% Empty matrices to store values from change values of delta

vs = zeros(n, numel(delta));

xs = zeros(n, numel(delta));

pstars = zeros(n, n, numel(delta));

% Construct reward function

f = zeros(n,m);

for k=1:m

f(:,k) = (X(k).^(1-gamma))/(1-gamma)-cost*X(k);

f(S<X(k),k) = -inf;

end

% Construct state transition function

g = zeros(n,m);

for i=1:n

for k=1:m

snext = alpha*(S(i)-X(k)) - 0.5*beta*(S(i)-X(k)).^2;

g(i,k) = getindex(snext,S);

end

end

% Pack model structure

for i=1:numel(delta)

clear model

model.reward = f;

model.transfunc = g;

model.discount = delta(i);

% Solve infinite-horizon model using policy iteration

[v,x,pstar] = ddpsolve(model);

vs (:, i) = v;

xs (:, i) = X(x);

pstars (:,:,i) = pstar;
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end

plot(S,xs);

title(’Optimal Harvest Policy’);

legend(’Location’,"eastoutside");

xlabel(’Stock’); ylabel(’Harvest’);

legend("Box","off");

for i = 1:numel(delta)

legendInfo{i} = [’\delta = ’ num2str(i/10)];

end

legend(legendInfo)

plot(S,vs);

title(’Optimal Value Function’);

xlabel(’Stock’); ylabel(’Value’);

lgd1 = legend(’Location’,"eastoutside");

legend("Box","off");

legend(legendInfo)

sinit = max(S);

nyrs = 20;

spaths = zeros(nyrs+1, numel(delta));

for z=1:numel(delta)

spath(:,:,z) = ddpsimul(pstars(:,:,z),n,nyrs);

spaths(:,z) = S(spath(:,:,z));

end

plot(0:nyrs,spaths)

title(’Optimal State Path’)

xlabel(’Year’); ylabel(’Stock’);

lgd1 = legend(’Location’,"eastoutside");

legend("Box","off");

legend(legendInfo)

Sensitivity analysis of alpha (growth factor)

clear;clc;

close all

% Enter model parameters

beta = 1.0; % growth function parameter

delta = 0.9; % discount factor

gamma = 0.5; % demand function parameter

cost = 0.2; % marginal cost of harvest

% Construct state space

n = 200; % number of states

smin = 0; % minimum state

sbar = 8; % maximum state

S = nodeunif(n,smin,sbar); % vector of states

% Construct action space

m = 100; % number of actions

xmin = 0; % minimum action

xmax = 6; % maximum action

X = nodeunif(m,xmin,xmax); % vector of actions

% Sensitivity analysis of delta

alpha = 3:0.2:4; % growth function parameter

% Empty matrices to store values from change values of alpha

vs = zeros(n, numel(alpha));

xs = zeros(n, numel(alpha));
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pstars = zeros(n, n, numel(alpha));

% Construct reward function

f = zeros(n,m);

for k=1:m

f(:,k) = (X(k).^(1-gamma))/(1-gamma)-cost*X(k);

f(S<X(k),k) = -inf;

end

% Construct state transition function

% Pack model structure

for l=1:numel(alpha)

g = zeros(n,m);

for i=1:n

for k=1:m

snext = alpha(l)*(S(i)-X(k)) - 0.5*beta*(S(i)-X(k)).^2;

g(i,k) = getindex(snext,S);

end

end

clear model

model.reward = f;

model.transfunc = g;

model.discount = delta;

% Solve infinite-horizon model using policy iteration

[v,x,pstar] = ddpsolve(model);

vs (:, l) = v;

xs (:, l) = X(x);

pstars (:,:,l) = pstar;

end

plot(S,xs);

title(’Optimal Harvest Policy’);

legend(’Location’,"eastoutside");

xlabel(’Stock’); ylabel(’Harvest’);

legend("Box","off");

for i = 1:numel(alpha)

legendInfo{i} = [’\alpha = ’ num2str(3+(i-1)*0.2)];

end

legend(legendInfo)

plot(S,vs);

title(’Optimal Value Function’);

xlabel(’Stock’); ylabel(’Value’);

lgd1 = legend(’Location’,"eastoutside");

legend("Box","off");

legend(legendInfo)

sinit = max(S);

nyrs = 20;

spaths = zeros(nyrs+1, numel(alpha));

for z=1:numel(alpha)

spath(:,:,z) = ddpsimul(pstars(:,:,z),n,nyrs);

spaths(:,z) = S(spath(:,:,z));

end

plot(0:nyrs,spaths)

title(’Optimal State Path’)

xlabel(’Year’); ylabel(’Stock’);

lgd1 = legend(’Location’,"eastoutside");

legend("Box","off");

legend(legendInfo)
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